AUTOMATIC CONTINGENCY SELECTION

Ejebe/Wollenberg Method vs. PSS/E Method

EE 8725 Project November 3, 2015 Tahnee Miller

Abstract

- Paper by G.C. Ejebe and B.F. Wollenberg submitted to the IEEE Transactions on Power Apparatus and Systems in 1979.
 - A fast technique for the automatic ranking and selection of contingency cases for a power system contingency analysis study.
 - Contingencies are ranked according to their expected severity as reflected in voltage level degradation and circuit overloads.
- Compared to PSS/E method, defined in a paper by T.A. Mikolinnas and B.F.Wollenberg completed in 1981.
 - Method seeks to improve Ejebe/Wollenberg contingency selection algorithm
- Complete contingency ranking on test case using both methods

Presentation Summary

- Introduction to Contingency Selection
- Ejebe/Wollenberg Method
- PSSE Method (Mikolinnas/Wollenberg)
- Test Case
- Conclusions

INTRODUCTION TO CONTINGENCY SELECTION

Purpose of Contingency Selection

- To identify critical contingencies from all possible contingencies
- To create system reliability by making system changes or upgrades to reduce the impact of the most critical contingencies
 - Protective device settings
 - Add backup generation
 - Line/transformer upgrades
 - Backup line for load switching during outage

Contingency Selection in Planning Studies

- Often involves testing of all possible combinations of outages
 - Even small systems can have many possibilities
- Contingency selection algorithms can be used to minimize the amount of cases that need to be looked at
- Can run algorithm to find worst case single outages, then take those lines out and run to find the worst case (n-2) outages

Real Time Contingency Selection

- Cases are complex because a single line outage may cause multiple circuit breaker options and other system changes due to system protection
- User only wants the one contingency that will cause the most issues for the system, not multiple contingencies
- Results are needed as quickly as possible

EJEBE/WOLLENBERG METHOD

Adaptive Contingency Processor

I. Index for Voltage Analysis

$$PI_V = \sum_{i=1}^{NB} \frac{W_{V_i}}{2n} \left(\frac{|V_i| - |V_i^{sp}|}{\Delta V_i^{Lim}}\right)^{2n}$$

where:

 $|V_i|$ is the voltage magnitude at bus i

 $|V_i^{sp}|$ is the specified (rated) voltage magnitude at bus i

 ΔV_i^{Lim} is the voltage deviation limit, above which voltage deviations are unacceptable

n is the exponent of penalty function (n = 1 is preferred)

NB is the number of buses in the system

 W_{V_i} is the real non-negative weighting factor

I. Index for Voltage Analysis

- Recall: ΔV_i^{Lim} is the voltage deviation limit, above which voltage deviations are unacceptable
 - If voltage is outside this limit, PI_V will be large
 - If voltage is within this limit, PI_V will be small
- Thus PI_V allows us to rank contingencies based on severity using the voltage limits on the system buses involved
- Problem: bus voltages depend on reactive power flow, which is not considered in this index
 - What if generators are driven to their reactive power (Q) limits?
- Solution: revised index to include reactive power constraints

I. Index for Voltage Analysis

$$PI_{VQ} = \sum_{i=1}^{NB} \frac{W_{V_i}}{2n} \left(\frac{|V_i| - |V_i^{Sp}|}{\Delta V_i^{Lim}}\right)^{2n} + \sum_{i=1}^{NG} \frac{W_{Q_i}}{2n} \left(\frac{Q_i}{Q_i^{Max}}\right)^{2n}$$

where:

 $|V_i|$ is the voltage magnitude at bus i

 $|V_i^{sp}|$ is the specified (rated) voltage magnitude at bus i

 ΔV_i^{Lim} is the voltage deviation limit, above which voltage deviations are unacceptable

n is the exponent of penalty function (n = I is preferred)

NB is the number of buses in the system

 W_{V_i} is the real non-negative weighting factor

 Q_i is the reactive power produced at bus i

 Q_i^{Max} is the reactive power production limit

NG is the number of reactive power production units

 W_{Q_i} is the real non-negative weighting factor (set to 0 if not required)

2. Index for Power Flow Analysis

$$PI_{MW} = \sum_{l=1}^{NL} \frac{W_l}{2n} \left(\frac{P_l}{P_l^{Lim}}\right)^{2n}$$

where:

 P_l is the megawatt flow of line *l* (calculated by the DC load flow model)

 P_l^{Lim} is the megawatt capacity of line *l*

NL is the number of lines in the system

n is the specified exponent (n = I is preferred)

 W_l is the real non-negative weighting coefficient; may be used to reflect importance of some lines

2. Index for Power Flow Analysis

- Recall: P_l^{Lim} is the line capacity limit
 - If line flows exceed their limits, Pl_{MW} will be large
 - If line flows are within their limits, PI_{MW} will be small
- The absolute value of PI_{MW} for each outage is not significant
 - Ranking is done by comparing PI_{MW} for each outage and looking at the relative change
 - This is done by looking at the results of the DC load flow solution before the outage (base case) and after the outage (adjoint power system)

Contingency List Options

Option	Performance Index	Outage Type
l. I	PI_V or PI_{VQ}	Line and/or generator outages
2	PI_{MW}	Line outages
3	PI _{MW}	Generator outages (Allows for redispatch of the lost generation)

 May focus on only one option, or repeat procedure to look at all three

Method Overview

Advantages

- Is able to rank all possible system contingencies
- Can be completed very quickly
- Gives planners a list of "worst case" contingencies to look at

Disadvantages

- Misrankings can occur
- Only identifies when overloads occur, so heavily loaded lines do not affect PI (masking)
- Gradient function of Tellegen's theorem is inaccurate because it uses a linear projection for a nonlinear function

PSS/E CONTINGENCY SELECTION METHOD

Method Overview

- "An Advanced Contingency Selection Algorithm"
 - Mikolinnas & Wollenberg (1981)
- Algorithm ranks contingencies at a fraction of the calculation time of doing a complete DC load flow of each case
- Approach was to reduce the number of contingencies to look at rather than reducing the computation time for each one
- Sought to improve the algorithm identified by Ejebe/Wollenberg method in 1979

Ejebe/Wollenberg

- Uses performance indices for real power, reactive power, and voltage
- Gradient technique (Tellegen's theorem)
- Capture rates* of 0.6-0.8

Mikolinnas/Wollenberg

- Uses performance indices for real power flow only
- Infinite Taylor series expansion
- Capture rates* of 0.9-1.0

*Capture rate is the fraction of the worst N contingencies appearing in the first N contingency rankings (1 is optimal).

Performance Index

$$\Delta PI = \frac{\tau_k P_k^2}{(1 - B_k \chi_k)^2} + \frac{2\widehat{\theta_k} P_k}{(1 - B_k \chi_k)} - W_k \left(\frac{P_k}{\overline{P_k}}\right)^2 \frac{1}{(1 - B_k \chi_k)^2}$$

where:

 B_k is the susceptance of circuit k

 P_k is the base case real power flow on circuit k

 $\overline{P_k}$ is the real power flow limit on circuit k

 W_k is the weighting factor of circuit k

 $\chi_k = X_{ii} + X_{jj} - 2X_{ij}$ where X_{ij} is the (i,j)th element of the system X matrix

 $\tau_k = T_{ii} + T_{jj} - 2T_{ij}$ where X_{ij} is the (i,j)th element of the NxN square matrix T

 $\widehat{\theta_k}$ is evaluated using a single additional DC load flow solution

Example Case Results

- Case studied was a 239 bus utility system model with 228 possible single contingencies
- Effectiveness profile shows nearly perfect ranking as compared to detailed ranking using DC load flows
- Had capture rate of nearly 1.000
- Masking only occurred for two cases
- Overall, example case showed ranking was much improved over previous method

TEST CASE

IEEE 14 Bus Power Flow Test Case

- Portion of the AEP system from 1962
- Consists of:
 - 14 buses (all 138 kV)
 - 5 generators (including one swing generator)
 - 17 lines (highest loaded line in base case is 158.2045 MVA)
 - 3 transformers (highest loaded in base case is 45.5497 MVA)
 - II loads
 - I fixed shunt
- Modifications to original test case data:
 - Line and transformer ratings were added manually
 - Line susceptance was added for lines where B=0
 - Transformer magnetizing B was added
- Case data courtesy of https://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm

IEEE 14 Bus Power Flow Test Case

- Looked at the PI_{MW} method only
- Used PSSE to get output data such as line flow, line limits, and phase angles at surrounding buses from load flow case
- Calculated PI_{MW} and ΔPI_{MW} for each contingency
- Ranked contingencies in order of ΔPI_{MW}

```
import psspy
import os
```

```
name = 'Bus Data (Xfmr 5-6 OOS).txt'
B = open(name,'w')
B.write('Bus,Vi,Visp,Qi,Qimax'+'\n')
B.close()
```

```
#Bus at which the data will be recorded
buses = [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
basekv = 138.0
```

- for bus in buses:

```
Vi = psspy.busdat(bus,'PU')
Visp = psspy.busdat(bus,'BASE')
Qi = psspy.macdat(bus,'1','Q')
Qimax = psspy.macdat(bus,'1','QMAX')
```

```
B = open(name,'a')
B.write(str(bus) + ',' + str(Vi[1]) + ',' + str(Visp[1]/basekv) + ',' + str(Qi[1])+ ',' + str(Qimax[1])+ '\n')
B.close()
```

```
name = 'Branch Data (Xfmr 5-6 OOS).txt'
C = open(name,'w')
C.write('To Bus, From Bus,Pl, Pllim, Phasei, Phasej, Susc'+'\n')
C.close()
```

```
#Lines over which the data will be recorded
branches = [[1,2],[1,5],[2,3],[2,4],[2,5],[3,4],[4,5],[6,11],[6,12],[6,13],[7,8],[7,9],[9,10],[9,14],[10,11],[12,13],[13,14]]
```

```
x = len(branches)
```

```
-while x > 0:
```

```
PLine = psspy.brnmsc(branches[x-1][0], branches[x-1][1], '1', 'P')
PLineLimit = psspy.brndst(branches[x-1][0], branches[x-1][1], '1', 'RATEA')
Phasei = psspy.busdat(branches[x-1][0], 'ANGLE')
Phasej = psspy.busdat(branches[x-1][1], 'ANGLE')
Susc = psspy.brndat(branches[x-1][0], branches[x-1][1], '1', 'CHARG')
C = open(name, 'a')
C.write(str(branches[x-1][0]) + ',' + str(branches[x-1][1]) + ',' + str(float(PLineLimit[1])) + ',' + str(Phasei[1]) + ',' + str(Phasei[1]) + ',' + str(Susc[1]) + ',' + str(Susc
```

x -= 1

Python Script for Collecting Power Flow Data From Load Flow Model

1	A	B	С	D	E	F	G	
1	To Bus	From Bus	PI	Pllim	Phasei	Phasej	Susc	
2	13	14	5.380337	30	-0.26377	-0.27993	0.001	
3	12	13	1.528291	30	-0.2621	-0.26377	0.001	
4	10	11	-3.47393	30	-0.26502	-0.25851	0.001	
5	9	14	9.695351	30	-0.26162	-0.27993	0.001	
6	9	10	5.537261	15	-0.26162	-0.26502	0.07	
7	7	9	28.42481	80	-0.23406	-0.26162	0.001	
8	6	13	17.55717	30	-0.24704	-0.26377	0.001	
9	6	12	7.696614	30	-0.24704	-0.2621	0.001	
10	6	11	7.024922	30	-0.24704	-0.25851	0.001	
11	4	5	-61.7659	100	-0.18058	-0.15346	0.05	
12	3	4	-23.3785	60	-0.22182	-0.18058	0.0128	
13	2	5	41.44781	60	-0.0869	-0.15346	0.0346	
14	2	4	56.19562	100	-0.0869	-0.18058	0.034	
15	2	3	73.13238	100	-0.0869	-0.22182	0.0438	
16	1	5	75.58489	80	0	-0.15346	0.0492	
17	1	2	156.7667	250	0	-0.0869	0.0528	
12								
1	A	В	С	D	E	F	G	
1	To Bus	From Bus	PI	Pllim	Phasei	Phasej	Susc	
2	4	9	16.34356	50	-0.18058	-0.26162	-0.005	
3	4	7	30.21959	50	-0.18058	-0.23406	-0.005	
4	5	6	45.65645	50	-0.15346	-0.24704	-0.005	
_								

Load Flow Model Output Data (Excel Format)

```
1 %GET INPUT DATA FOR PI FROM LOAD FLOW CASE SOLUTION
2
3 %read Excel files containing PSSE load flow data
4 %future improvement - make generic for other cases
5 branchfile = 'Branch Data (Base Case Plus Contingencies).xlsx';
6 [branchdata]=xlsread(branchfile, 'BaseCase');
7 [branchdata_1to200S]=xlsread(branchfile,'1-2');
8 [branchdata_1to500S]=xlsread(branchfile,'1-5');
9 [branchdata_2to300S]=xlsread(branchfile,'2-3');
10 [branchdata_2to400S]=xlsread(branchfile,'2-4');
11 [branchdata_2to500S]=xlsread(branchfile,'2-5');
12 [branchdata_3to400S]=xlsread(branchfile,'3-4');
13 [branchdata_4to500S]=xlsread(branchfile,'4-5');
```

Matlab Code to Extract Load Flow Data from Excel Files

```
1 %CALCULATE PIMW
 2
 3 print flag = 1;
 4
 5 %get input data from load flow solution results in Excel
 6 getinputwithcontingencies;
 7
 8 %set exponent and weighting factors to unity
 9 n=1;
10 W1=1;
11
12 %initialize PIMW array to have NL rows and 4 columns
13 PIMW = zeros(NL,4);
14
15 %initialize temporary arrays for summation data storage
16 PIMWtemp = zeros(1,NL);
17 deltaPIMWtemp = zeros(1,NL);
18
19 %calculate PIMW and deltaPIMW and put into PIMW array along with line IDs
```

Ejebe/Wollenberg Method (*PI_{MW}*)

	Branch		Ejebe/Wollenberg Method Ranking				
From Bus	To Bus	Branch Type	PI_{MW}	$\Delta P I_{MW}$	Ranking		
I	2	Line	8.198905	0.014781	I		
I	5	Line	3.158477	0.005078	2		
2	3	Line	4.848942	0.004928	3		
2	4	Line	3.446403	0.003801	4		
2	5	Line	2.610697	0.003632	5		
3	4	Line	2.551574	0.003496	6		
4	5	Line	2.955756	0.003443	7		
6	П	Line	2.969232	0.003306	10		
6	12	Line	2.818355	0.003303	12		
6	13	Line	2.850881	0.003314	8		
7	8	Line	E	xcluded – Swing Generato	r		
7	9	Line	3.106981	0.003287	16		
9	10	Line	2.695153	0.003304	П		
9	14	Line	3.14238	0.003306	9		
10	П	Line	2.771831	0.003303	14		
12	13	Line	2.681364	0.0033	15		
13	14	Line	2.630869	0.003303	13		
5	6	Transformer	6.472832	0.00325	18		
4	7	Transformer	3.022576	0.003243	19		
4	9	Transformer	2.929076	0.003282	17		

♦ PSS®E 33 - C:\Users\tahnee.	mille	r\Desktop\	EE 87	25 Project\I	EE 14 bus.sav	/									
🗋 💕 🖬 🐰 🖻 🛍 🗙	2		0 📮	100	1 6 6 6		E N		+90 -90	1 🔠 🏥 1			4 δ	6 1	
100% 🔹 💽 🕞 💟 🙉 🤇	21 (Q 👜 📜 !	ALL BUS	胡飞 E	# 1? 🗄	8	DFA	k	•	> > × .	/ 📜 🗄		1 👬 🕅	R .	
s: F 🖉 🛱 💭 🚝 🛱 🤻	þ (1	🕈 🎌 -	2 🕏	Ŧ \$Ŧ 🖽 ,			1 🐼		r -						
File Edit View Diagram	Pov	ver Flow	Fault	OPF Tra	ns Access D) ynan	nics	Distu	rbance	Subsystem	Misc I	VO Control	Tools V	Vindo	
Plot Tree View		Solution				•									
Plot Data		Changing				•	Ba	se kV	Area Num	Area Name	Zone Num	Zone Name	Owne r		
Comtrade Files		Reports				1		138.0	1	IEEE14	1	IEEE 14	1	1	
Functions		Convert L	oads a	and Generat	ors			138.0	1	IEEE14	1	IEEE 14	1	1	
		Equivalen	ce Net	tworks				138.0	1	IEEE14	1	IEEE 14	1	1	
		Linear Net	twork			•	DC network solution and report (DCLF)								
		Continger	ncy, Re	eliability, PV,	QV analysis	•	Single contingency ranking (RANK)								
		GIC Analy	sis				Create/modify SUB, MON and CON configuration files								
	Der	List Data		Ctrl+Shift+L Build distribution factor data file (DFAX)											
		Check Dat	ta			•	DC contingency checking (DCCC)							1000	
		Panumba	ring A	raas / Owna	rs / Zones	-		DC co	rrective	actions					
Renumber Buses			•	Calculate and print distribution factors (OTDF).											
	Results Analysis and Visualization					Transn	Transmission interchange limits calculation (TLTG)								
				13	80513			Seque	ntial pa	irticipation inte	erchange	limit (SPIL)			
				14	BUS 14			Interch	hange li	imits with two	opposing	g systems (POL	Y)		
			*					Interch	hange li	imits calculatio	ns (POLY)	- previous res	ults		
								Midwe	est MW-	-mile calculatio	n (MWMI	ŋ			

onfiguration File Builder		—
Files to create/modify		
Create/modify SUB	Create/modify MON	Create/modify CON
Subsystem Description Date	a file	
Append Subsystem desc	ription to existing file	
Subsystem name	IEEE 14	
Select bus subsystem	Select	
Subsystem description file		
C:\Users\tahnee.miller\Des	ktop\EE 8725 Project\s	subsy 👻 Edit
Monitored Element Data file		
Append Monitored eleme	ents to existing file	
Bus voltage range	Vmin 0.9	Vmax 1.1
Bus voltage deviation	Drop 0.03	Rise 0.06
All branch flows	All tie-line flows	
Monitored element file		
C:\Users\tahnee.miller\Des	ktop\EE 8725 Project\r	monit 🔻 Edit
Contingency Description Da	ata file	
Append Contingency de	scriptions to existing file	
Single contingency	Double contingend	zy
Bus-double contingency	Parallel circuit cont	tingency
Include tie-lines		
Contingency description dat	a file	
C:\Users\tahnee.miller\Des	ktop\EE 8725 Project\c	contir 👻 Edit
DFAX	Go	Close

monitor.mon - Notepad	
File Edit Format View Help	
COM COM MONITORED element file entry created by PSS(R)E Config File Builder COM MONITOR VOLTAGE RANGE SUBSYSTEM 'IEEE 14' 0.900 1.100 MONITOR VOLTAGE DEVIATION SUBSYSTEM 'IEEE 14' 0.030 0.060 MONITOR BRANCHES IN SUBSYSTEM 'IEEE 14' MONITOR TIES FROM SUBSYSTEM 'IEEE 14' END	
	-
<u>×</u>	<u>r</u> i

subsystem.sub - Notepad	- • •
File Edit Format View Help	
COM COM SUBSYSTEM description file entry created by PSS(R)E Config File Builder COM SUBSYSTEM 'IEEE 14' AREA 1 END END	
	-
٠	E. ₹

🔄 contingencies.con - Notepad	
File Edit Format View Help	
COM COM CONTINGENCY description file entry created by PSS(R)E Config File Builder COM SINGLE BRANCH IN SUBSYSTEM 'IEEE 14' SINGLE TIE FROM SUBSYSTEM 'IEEE 14' DOUBLE TIE FROM SUBSYSTEM 'IEEE 14' PARALLEL TIE FROM SUBSYSTEM 'IEEE 14' END	
٠	▼

PSS®E 33 - C:\Users\tahnee.	mille	er\Desktop\EE 8725 Project\IEEE 14 bus.sav									
i 🗋 💕 🔚 i 🐰 🖬 🛍 🗙	9	20 0 . i i i i i i i i i i i i i i i i i	Ţ		12 +90 -	-90 ::::	III -	•	• 4	१ कि भ	s ·
110% 🔹 🔍 🔾 💟 🧕	21 (२ 🖱 📮 🔛 🛍 😘 ╞ 🤻 🕐 📰 ।	-		.		8 4 4			i 🕫 🗞 🖡	2
i 🗊 🗭 🖉 🛱 🛱 🛱 🤻	a a	🕯 🎌 🚣 🖛 🗊 📮 🖩 🕡 🗊	6	M 88	æ hr ,						
File Edit View Diagram	Pov	wer Flow Fault OPF Trans Access Dy	nai	mics	Disturbar	ice Su	bs <mark>ystem</mark> Mis	c I/O Cont	rol Too	ls Windov	v
Plot Tree View		Solution	•	1							
Plot Data Channel Files		Changing		Line rom (B Li pu) To	ne G (pu)	Line B To (pu)	Length	Owne r	Fraction 1	C
Comtrade Files		Reports	1	0.000	0 000	.00000	0.00000	0.000	1	1.000	
Functions		Convert Loads and Generators		0.000	000 0	.00000	0.00000	0.000	1	1.000	
	_	Equivalence Networks	_	0.000	000 0	00000	0.00000	0.000	1	1.000	
		Linear Network	۲	[OC networ	k solutio	on and report	(DCLF)		00	
		Contingency, Reliability, PV/QV analysis	۲	5	single con	tingency	y ranking (RAN	IK)		00	
		GIC Analysis			reate/mo	dify SUB	, MON and CO	ON configurat	ion files.	00	
	Der	List Data Ctrl+Shift+L		DFAX E	B <mark>uild d</mark> istr	ibution 1	factor data file	(DFAX)		00	
		Check Data		C	OC contine	ency ch	ecking (DCCC)			00	
			_		C correct	ive actio	nc			00	
		Renumbering Areas / Owners / Zones			-leulate a	and active	t distribution d			00	
		Renumber Buses	۲			ina prin	t distribution i)	00	
		Pecults Analysis and Visualization	_	1	Transmissi	on intere	change limits o	alculation (Tl	.TG)	00	
	_	30.0 0.00000	_	-	equential	particip	ation intercha	inge limit (SPI	L)	00	·····
		30.0 0.00000		I	nterchand	e limits	with two opp	osina systems	POLY	00	
		30.0 0.00000		T	nterchanc	e limite	calculations (P		is resulte	00	·····
		*			didwart b	NA/ mile			as results		
					widwest N	wy-mile	calculation (M	www.wilj			A

Single Contingency Ranking		×
MW mismatch tolerance 0.50 Small reactance threshold 0.0005 Image: Allow ties from subsystem as contingent	су	Island contingencies Include contingencies creating swingless islands MW threshold to include island contingencies 100.00
Overload contingencies Number of branch contingencies in file Number of mach. contingencies in file Contingency case rating Percent of rating Convert ratings to estimate MW ratin	17 0 Rate A V 100.00 🗘	Voltage contingencies Number of contingencies in file 10 Lines, used in voltage ranker PI Only with non-zero rating All
Files Subsystem description Monitored element description Contingency output Select		 ✓ … Edit… ✓ … Edit… ✓ … Edit…
All buses Selected bus subsystem Select The following buses	t ОК	Cancel

Single Contingency Ranking			23
MW mismatch tolerance 0.50 Small reactance threshold 0.00 Allow ties from subsystem as o Overload contingencies	0 v 005 v contingency	Island contingencies Include contingencies creating MW threshold to include island contingencies Voltage contingencies	g swingless islands 0.00
Number of branch contingencie Number of mach. contingencie Contingency case rating Percent of rating Convert ratings to estimate	es in file 25 Rate A • 100.00 ÷	Number of contingencies in file Lines, used in voltage ranker P Only with non-zero rating All	25
Files Subsystem description Monitored element description Contingency output	C:\Users\tahnee.miller\De C:\Users\tahnee.miller\De C:\Users\tahnee.miller\De	sktop\EE 8725 Project\subs 👻 💽 sktop\EE 8725 Project\moni 👻 💽 sktop\EE 8725 Project\cont 👻 💽	Edit Edit Edit
 All buses Selected bus subsystem The following buses 	Select		
	ОК	Cancel	

Output Bar

Case saved in file C:\Users\tahnee.miller\Desktop\EE 8725 Project\IEEE 14 bus.sav on SAT, OCT 31 2015 19:42
Configuration files created
The working case has a largest mismatch of 0.01 MW at bus 3 [BUS 3 138.00]
Processing the Subsystem Description Data File
Processing the Monitored Element Data File
Output completed
Progress Alerts/Warnings

contingencies.con - Note	pad									-	- • •
File Edit Format View	Help										
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	1-2(1)' 1 TO	BUS	2 CKT 1	/ PI=	13.7589	'BUS 1	138.00'	то 'ви	52	138.00'	-
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	5-6(1)' 5 TO	BUS	6 CKT 1	/ PI=	12.3023	'BUS 5	138.00'	то 'ви	5 6	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	2-3(1)' 2 TO	BUS	3 СКТ 1	/ PI=	9.2850	'BUS 2	138.00'	то 'ви	53	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	2-4(1)' 2 TO	BUS	4 CKT 1	/ PI=	6.7579	BUS 2	138.00'	to 'bu	5 4	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	1-5(1)' 1 TO	BUS	5 CKT 1	/ PI=	6.1551	'BUS 1	138.00'	то 'ви	5 5	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	9-14(1)' 9 TO	BUS	14 CKT 1	/ PI=	6.1447	'BUS 9	138.00'	то 'ви	5 14	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	4-7(1)' 4 TO	BUS	7 СКТ 1	/ PI=	5.9301	'BUS 4	138.00'	то 'ви	57	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	7-9(1)' 7 TO	BUS	9 CKT 1	/ PI=	5.9301	'BUS 7	138.00'	то 'ви	5 9	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	6-11(1)' 6 TO	BUS	11 скт 1	/ PI=	5.8128	BUS 6	138.00'	то 'ви	5 11	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	4-9(1)' 4 TO	BUS	9 CKT 1	/ PI=	5.7339	'BUS 4	138.00'	то 'ви	59	138.00'	=
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	6-13(1)' 6 TO	BUS	13 CKT 1	/ PI=	5.5211	BUS 6	138.00'	то 'ви	5 13	138.00'	
CONTINGENCY 'OVRLOD OPEN LINE FROM BUS END	6-12(1)' 6 TO	BUS	12 скт 1	/ PI=	5.5094	'BUS 6	138.00'	то 'ви	5 12	138.00'	
CONTINGENCY OVRLOD OPEN LINE FROM BUS END	4-5(1) ⁺ 4 TO	BUS	5 CKT 1	/ PI=	5.4191	'BUS 4	138.00'	то 'ви	5 5	138.00'	
CONTINGENCY OVRLOD OPEN LINE FROM BUS END	10-11(1) 10 TO	BUS	11 СКТ 1	/ PI=	5.4146	'BUS 10	138.00'	то 'ви	5 11	138.00'	
CONTINGENCY OVRLOD OPEN LINE FROM BUS END	12-13(1) 12 TO	BUS	13 СКТ 1	/ PI=	5.2586	'BUS 12	138.00'	то 'ви	5 13	138.00'	
CONTINGENCY OVRLOD OPEN LINE FROM BUS END	9-10(1) ⁻ 9 TO	BUS	10 скт 1	/ PI=	5.2448	'BUS 9	138.00'	то 'ви	5 10	138.00'	
CONTINGENCY OVRLOD OPEN LINE FROM BUS END	13-14(1) 13 TO	BUS	14 СКТ 1	/ PI=	5.1523	BUS 13	138.00'	то 'ви	5 14	138.00'	
CONTINGENCY OVRLOD OPEN LINE FROM BUS END	2-5(1) 2 TO	BUS	5 CKT 1	/ PI=	5.1020	'BUS 2	138.00'	то 'ви	5 5	138.00'	
CONTINGENCY OVRLOD OPEN LINE FROM BUS END	3-4(1) ⁺ 3 TO	BUS	4 CKT 1	/ PI=	4.9723	'BUS 3	138.00'	то 'ви	5 4	138.00'	
END											

-

Branch			Contingency File Output		
From Bus	To Bus	Branch Type	PI	Ranking	
I	2	Line	13.7589	L	
L	5	Line	6.1551	5	
2	3	Line	9.2850	3	
2	4	Line	6.7579	4	
2	5	Line	5.1020	18	
3	4	Line	4.9723	19	
4	5	Line	5.4191	13	
6	П	Line	5.8128	9	
6	12	Line	5.5094	12	
6	13	Line	5.5211	П	
7	8	Line	Excluded – Sw	ing Generator	
7	9	Line	5.9301	8	
9	10	Line	5.2448	16	
9	14	Line	6.1447	6	
10	П	Line	5.4146	14	
12	13	Line	5.2586	15	
13	14	Line	5.1523	17	
5	6	Transformer	12.3023	2	
4	7	Transformer	5.9301	7	
4	9	Transformer	5.7339	10	

	Bra	anch		Ranking			
Contingency	From Bus	To Bus	Branch Type	Ejebe/Wollenberg Paper (<i>PI_{MW}</i>)	PSSE Activity "RANK"		
I	I	2	Line	I	I		
2	I	5	Line	2	5		
3	2	3	Line	3	3		
4	2	4	Line	4	4		
5	2	5	Line	5	18		
6	3	4	Line	6	19		
7	4	5	Line	7	13		
8	6	П	Line	10	9		
9	6	12	Line	12	12		
10	6	13	Line	8	П		
-	7	8	Line	Excluded – Swing Generator			
П	7	9	Line	16	8		
12	9	10	Line	П	16		
13	9	14	Line	9	6		
14	10	П	Line	14	14		
15	12	13	Line	15	15		
16	13	14	Line	13	17		
17	5	6	Transformer	18	2		
18	4	7	Transformer	19	7		
19	4	9	Transformer	17	10		

Ranking Comparison

- Rankings were quite different between the two methods
- Issues due to manually set line overloads
 - Purposely set contingency #2 (line I to 5 OOS) to have a rating very close to the actual line flow during normal operation.
 - Ejebe/Wollenberg method: #2
 - RANK method:#5
 - Saw masking using Ejebe/Wollenberg method because performance index values were very similar.

CONCLUSIONS

Summary

- Methods gave very different results in test case
- Research is extensive for test cases comparing contingency selection methods
 - First Order (Ejebe/Wollenberg method using Tellegen's theorem)
 - Second Order (Mikolinnas/Wollenberg method using Taylor expansion)
 - Detailed DC load flow
 - Detailed AC load flow
- Mikolinnas/Wollenberg (RANK) method seems to be most widely used to minimize calculation time and get accurate results